Протоны нейтроны электроны как определить. A – атомная масса эл

§1. Знакомьтесь: электрон, протон, нейтрон

Атомы - мельчайшие частицы вещества.
Если увеличить до размеров Земного шара яблоко средней величины, то атомы станут размером всего лишь с яблоко. Несмотря на столь малые размеры, атом состоит из еще более мелких физических частиц.
Со строением атома вы должны быть уже знакомы из школьного курса физики. И все-таки напомним, что в составе атома есть ядро и электроны, которые вращаются вокруг ядра так быстро, что становятся неразличимыми - образуют "электронное облако", или электронную оболочку атома.

Электроны принято обозначать так: e . Электроны e − очень легкие, почти невесомые, но зато имеют отрицательный электрический заряд. Он равен −1. Электрический ток, которым все мы пользуемся - это поток электронов, бегущий в проводах.

Ядро атома , в котором сосредоточена почти вся его масса, состоит из частиц двух сортов - нейтронов и протонов.

Нейтроны обозначают так: n 0 , а протоны так: p + .
По массе нейтроны и протоны почти одинаковы - 1,675 · 10 −24 г и 1,673 · 10 −24 г.
Правда, считать массу таких маленьких частиц в граммах очень неудобно, поэтому ее выражают в углеродных единицах , каждая из которых равна 1,673 · 10 −24 г.
Для каждой частицы получают относительную атомную массу , равную частному от деления массы атома (в граммах) на массу углеродной единицы. Относительные атомные массы протона и нейтрона равны 1, а вот заряд у протонов положительный и равен +1, в то время как у нейтронов заряда нет.

. Загадки про атом


Атом можно собрать "в уме" из частиц, как игрушку или машинку из деталей детского конструктора. Надо только при этом соблюдать два важных условия.

  • Первое условие : каждому виду атомов соответствует свой собственный набор "деталей" - элементарных частиц . Например, в атоме водорода обязательно будет ядро с положительным зарядом +1, значит, в нем непременно должен быть один протон (и не больше).
    В атоме водорода могут быть и нейтроны. Об этом - в следующем параграфе .
    Атом кислорода (порядковый номер в Периодической системе равен 8) будет иметь ядро, заряженное восемью положительными зарядами (+8), - значит, там восемь протонов. Поскольку масса атома кислорода равна 16 относительных единиц, чтобы получить ядро кислорода, добавим еще 8 нейтронов.
  • Второе условие состоит в том, чтобы каждый атом оказался электронейтральным . Для этого в нем должно быть электронов столько, чтобы уравновесить заряд ядра. Иначе говоря, число электронов в атоме равно числу протонов в его ядре, а также порядковому номеру этого элемента в Периодической системе .

А также составить электронную формулу. Для этого потребуется только периодическая система химических элементов Д.И. Менделеева, которая является обязательным справочным материалом.

Таблица Д.И. Менделеева разделена на группы (располагаются вертикально), которых всего восемь, а также на периоды, расположенные горизонтально. Каждый имеет свой порядковый и относительную атомную массу, что указано в каждой периодической таблицы. Количество протонов (р) и электронов (ē) численно совпадает с порядковым номером элемента. Для определения числа нейтронов (n) необходимо из относительной атомной массы (Ar) вычесть номер химического элемента.

Пример № 1. Вычислите количество протонов , электронов и нейтронов атома химического элемента № 7.Химический элемент № 7 – это азот (N). Сначала определите количество протонов (р). Если порядковый номер 7, значит, будет 7 протонов . Учитывая, что это число совпадает с количеством отрицательно заряженных частиц, электронов (ē) тоже будет 7. Для определения числа нейтронов (n) из относительной атомной массы (Ar (N) = 14) вычтите порядковый номер азота (№ 7). Следовательно, 14 – 7 = 7. В общем виде вся информация выглядит таким образом:р = +7;ē = -7;n = 14-7 = 7.

Пример № 2. Вычислите количество протонов , электронов и нейтронов атома химического элемента № 20.Химический элемент № 20 – это кальций (Са). Сначала определите количество протонов (р). Если порядковый номер 20, следовательно, будет 20 протонов . Зная, что это число совпадает с количеством отрицательно заряженных частиц, значит электронов (ē) тоже будет 20. Для определения числа нейтронов (n) из относительной атомной массы (Ar (Са) = 40) вычтите порядковый номер (№ 20). Следовательно, 40 – 20 = 20. В общем виде вся информация выглядит таким образом:р = +20;ē = -20;n = 40-20 = 20.

Пример № 3. Вычислите количество протонов , электронов и нейтронов атома химического элемента № 33.Химический элемент № 33 – это мышьяк (As). Сначала определите количество протонов (р). Если порядковый номер 33, значит, будет 33 . Учитывая, что это число совпадает с количеством отрицательно заряженных частиц, электронов (ē) тоже будет 33. Для определения числа нейтронов (n) из относительной атомной массы (Ar (As) = 75) вычтите порядковый номер азота (№ 33). Следовательно, 75 – 33 = 42. В общем виде вся информация выглядит таким образом:р = +33;ē = -33;n = 75 -33 = 42.

Обратите внимание

Относительную атомную массу, указанную в таблице Д.И. Менделеева, необходимо округлять до целого числа.

Источники:

  • протон и нейтроны составляют ответ

Колбу отставьте в сторону для остывания. Достаточно полторы-две минуты. В противном случае образуется нерастворимый осадок.

Лейте по стенке воду, промывая ею воронку. Взболтайте до полного смешивания, подогревая колбу при необходимости.

Соберите , присоедините приемник. В приемник пустите 10 мл 0,01 н. раствора серной кислоты. Внесите одну или две капли метилрота. После соединения всех ингредиентов, пристройте водоструйный насос к приемнику.

По истечении десяти минут перегонку прекратите. Закройте кран водоструйного , откройте пробку приемника, смойте серную кислоту с конца холодильной трубки. Замените другим приемником с таким же объемом 0,01 н. раствора серной кислоты, сделайте вторую перегонку.

Вывод: 1 мл 0,01 н. серной кислоты или едкого натрия соответствует 0,14 мг .
Разность между количеством серной кислоты, помещенной в приемник, и количеством едкого натрия, взятого при титровании, произведенная на 0,14 мг, равна количеству остаточного азота в исследуемом 1 мл крови. Чтоб показать количество азота в - , надо умножить на 100.

Валентность - это способность химических элементов удерживать определенное количество атомов других элементов. В то же самое время, это число связей, образуемое данным атомом с другими атомами. Определить валентность достаточно просто.

Инструкция

Примите к сведению, что валентность атомов одних элементов постоянна, а других - переменна, то есть, имеет свойство меняться. Например, водород во всех соединениях одновалентен, поскольку образует только одну . Кислород способен образовывать две связи, являясь при этом двухвалентным. А вот у может быть II, IV или VI. Все зависит от элемента, с которым она соединяется. Таким образом, сера - элемент с переменной валентностью.

Заметьте, что в молекулах водородных соединений вычислить валентность очень просто. Водород всегда одновалентен, а этот показатель у связанного с ним элемента будет равняться количеству атомов водорода в данной молекуле. К примеру, в CaH2 кальций будет двухвалентен.

Запомните главное правило определения валентности: произведение показателя валентности атома какого-либо элемента и количества его атомов в какой-либо молекуле произведению показателя валентности атома второго элемента и количества его атомов в данной молекуле.

Посмотрите на буквенную формулу, обозначающую это равенство: V1 x K1 = V2 x K2, где V - это валентность атомов элементов, а К - количество атомов в молекуле. С ее помощью легко определить показатель валентности любого элемента, если известны остальные данные.

Рассмотрите пример с молекулой оксида серы SО2. Кислород во всех соединениях двухвалентен, поэтому, подставляя значения в пропорцию: Vкислорода х Кислорода = Vсеры х Ксеры, получаем: 2 х 2 = Vсеры х 2. От сюда Vсеры = 4/2 = 2. Таким образом, валентность серы в данной молекуле равна 2.

Видео по теме

Электрон – самая легкая электрически заряженная частица, которая участвует практически во всех электрических явлениях. Он, благодаря своей малой массе, наиболее вовлечен в развитие квантовой механики. Эти быстрые частицы нашли широкое применение в области современной науки и техники.

Слово ἤλεκτρον - греческое. Именно оно дало имя электрону. Переводится это как «янтарь». В времена греческие естествоиспытатели проводили различные эксперименты, которые заключались в шерстью кусков янтаря, которые затем начинали притягивать к себе разные мелкие предметы. Электрон ом названа отрицательно заряженная частица, которая является одной из основных единиц, составляющих структуру вещества. Электрон ные оболочки атомов состоят из электронов, при этом их положение и число являются определяющими химических свойств вещества.О числе электронов в атомах различных веществ можно узнать из таблицы химических элементов, составленной Д.И. Менделеевым. Число протонов в ядре атома всегда равно числу электронов, которое должно быть в электронной оболочке атома данного вещества. Электрон ы вращаются вокруг ядра с огромной скоростью, и поэтому они не « » на ядро. Это наглядно сравнимо Луной, которая не падает, несмотря на то, что Земля ее притягивает.Современные представления физики элементарных частиц свидетельствуют о бесструктурности и неделимости . Движение этих частиц в полупроводниках и разрешает легко переносить и управлять энергией. Это свойство повсеместно используется в электронике, быту, промышленности, и связи. Несмотря на то, что в проводниках скорость движения электронов очень маленькая, электрическое поле способно распространяться со скоростью света. Благодаря этому ток по всей цепи устанавливается моментально.Электрон ы, помимо корпускулярных, обладают еще и волновыми свойствами. Они участвуют в гравитационном, слабом и электромагнитном взаимодействиях. Устойчивость электрона следует из законов энергии и сохранения заряда. Эта частица – самая легкая из заряженных, и поэтому не может ни на что распасться. Распад на частицы более легкие законом сохранения заряда, а на более тяжелые, чем частицы запрещен законом сохранения энергии. О точности, с которой выполнен закон сохранения заряда, судить можно по тому, что электрон, по крайней мере, за десять лет, своего заряда не теряет.

Видео по теме

Что такое нейтрон? Каковы его структура, свойства и функции? Нейтроны - это самые большие из частиц, составляющих атомы, являющиеся строительными блоками всей материи.

Структура атома

Нейтроны находятся в ядре - плотной области атома, также заполненной протонами (положительно заряженными частицами). Эти два элемента удерживаются вместе при помощи силы, называем ядерной. Нейтроны имеют нейтральный заряд. Положительный заряд протона сопоставляется с отрицательным зарядом электрона для создания нейтрального атома. Несмотря на то что нейтроны в ядре не влияют на заряд атома, они все же обладают многими свойствами, которые влияют на атом, включая уровень радиоактивности.

Нейтроны, изотопы и радиоактивность

Частица, которая находится в ядре атома - нейтрон на 0,2% больше протона. Вместе они составляют 99,99% всей массы одного и того же элемента могут иметь различное количество нейтронов. Когда ученые ссылаются на атомную массу, они имеют в виду среднюю атомную массу. Например, углерод обычно имеет 6 нейтронов и 6 протонов с атомной массой 12, но иногда он встречается с атомной массой 13 (6 протонов и 7 нейтронов). Углерод с атомным номером 14 также существует, но встречается редко. Итак, атомная масса для углерода усредняется до 12,011.

Когда атомы имеют различное количество нейтронов, их называют изотопами. Ученые нашли способы добавления этих частиц в ядро ​​для создания больших изотопов. Теперь добавление нейтронов не влияет на заряд атома, так как они не имеют заряда. Однако они увеличивают радиоактивность атома. Это может привести к очень неустойчивым атомам, которые могут разряжать высокие уровни энергии.

Что такое ядро?

В химии ядро ​​является положительно заряженным центром атома, который состоит из протонов и нейтронов. Слово «ядро» происходит от латинского nucleus, которое является формой слова, означающего "орех" или "ядро". Этот термин был придуман в 1844 году Майклом Фарадеем для описания центра атома. Науки, участвующие в исследовании ядра, изучении его состава и характеристик, называются ядерной физикой и ядерной химией.

Протоны и нейтроны удерживаются сильной ядерной силой. Электроны притягиваются к ядру, но двигаются так быстро, что их вращение осуществляется на некотором расстоянии от центра атома. Заряд ядра со знаком плюс исходит от протонов, а что такое нейтрон? Это частица, которая не имеет электрического заряда. Почти весь вес атома содержится в ядре, так как протоны и нейтроны имеют гораздо большую массу, чем электроны. Число протонов в атомном ядре определяет его идентичность как элемента. Число нейтронов означает, какой изотоп элемента является атомом.

Размер атомного ядра

Ядро намного меньше общего диаметра атома, потому что электроны могут быть отдалены от центра. Атом водорода в 145 000 раз больше своего ядра, а атом урана в 23 000 раз больше своего центра. Ядро водорода является наименьшим, потому что оно состоит из одиночного протона.

Расположение протонов и нейтронов в ядре

Протон и нейтроны обычно изображаются как уплотненные вместе и равномерно распределенные по сферам. Однако это упрощение фактической структуры. Каждый нуклон (протон или нейтрон) может занимать определенный уровень энергии и диапазон местоположений. В то время как ядро ​​может быть сферическим, оно может быть также грушевидным, шаровидным или дисковидным.

Ядра протонов и нейтронов представляют собой барионы, состоящие из наименьших называемых кварками. Сила притяжения имеет очень короткий диапазон, поэтому протоны и нейтроны должны быть очень близки друг к другу, чтобы быть связанными. Это сильное притяжение преодолевает естественное отталкивание заряженных протонов.

Протон, нейтрон и электрон

Мощным толчком в развитии такой науки, как ядерная физика, стало открытие нейтрона (1932 год). Благодарить за это следует английского физика который был учеником Резерфорда. Что такое нейтрон? Это нестабильная частица, которая в свободном состоянии всего за 15 минут способна распадаться на протон, электрон и нейтрино, так называемую безмассовую нейтральную частицу.

Частица получила свое название из-за того, что она не имеет электрического заряда, она нейтральна. Нейтроны являются чрезвычайно плотными. В изолированном состоянии один нейтрон будет иметь массу всего 1,67·10 - 27 , а если взять чайную ложку плотно упакованную нейтронами, то получившийся кусок материи будет весить миллионы тонн.

Количество протонов в ядре элемента называется атомным номером. Это число дает каждому элементу свою уникальную идентичность. В атомах некоторых элементов, например углерода, число протонов в ядрах всегда одинаково, но количество нейтронов может различаться. Атом данного элемента с определенным количеством нейтронов в ядре называется изотопом.

Опасны ли одиночные нейтроны?

Что такое нейтрон? Это частица, которая наряду с протоном входит в Однако иногда они могут существовать сами по себе. Когда нейтроны находятся вне ядер атомов, они приобретают потенциально опасные свойства. Когда они двигаются с высокой скоростью, они производят смертельную радиацию. Так называемые нейтронные бомбы, известные своей способностью убивать людей и животных, при этом оказывают минимальное влияние на неживые физические структуры.

Нейтроны являются очень важной частью атома. Высокая плотность этих частиц в сочетании с их скоростью придает им чрезвычайную разрушительную силу и энергию. Как следствие, они могут изменить или даже разорвать на части ядра атомов, которые поражают. Хотя нейтрон имеет чистый нейтральный электрический заряд, он состоит из заряженных компонентов, которые отменяют друг друга относительно заряда.

Нейтрон в атоме - это крошечная частица. Как и протоны, они слишком малы, чтобы увидеть их даже с помощью электронного микроскопа, но они там есть, потому что это единственный способ, объясняющий поведение атомов. Нейтроны очень важны для обеспечения стабильности атома, однако за пределами его атомного центра они не могут существовать долго и распадаются в среднем всего лишь за 885 секунд (около 15 минут).

Как уже отмечалось, атом состоит из трех видов элементарных частиц: протонов, нейтронов и электронов. Атомное ядро - центральная часть атома, состоящая из протонов и нейтронов. Протоны и нейтроны имеют общее название нуклон, в ядре они могут превращаться друг в друга. Ядро простейшего атома - атома водорода - состоит из одной элементарной частицы - протона.


Диаметр ядра атома равен примерно 10-13 - 10-12 см и составляет 0,0001 диаметра атома. Однако, практически вся масса атома (99,95-99,98%) сосредоточена в ядре. Если бы удалось получить 1 см3 чистого ядерного вещества, масса его составила бы 100-200 млн.т. Масса ядра атома в несколько тысяч раз превосходит массу всех входящих в состав атома электронов.


Протон - элементарная частица, ядро атома водорода. Масса протона равна 1,6721 х 10-27 кг, она в 1836 раз больше массы электрона. Электрический заряд положителен и равен 1,66 х 10-19 Кл. Кулон - единица электрического заряда, равная количеству электричества, проходящему через поперечное сечение проводника за время 1с при неизменной силе тока 1А (ампер).


Каждый атом любого элемента содержит в ядре определенное число протонов. Это число постоянное для данного элемента и определяет его физические и химические свойства. То есть от количества протонов зависит, с каким химическим элементом мы имеем дело. Например, если в ядре один протон - это водород, если 26 протонов - это железо. Число протонов в атомном ядре определяет заряд ядра (зарядовое число Z) и порядковый номер элемента в периодической системе элементов Д.И. Менделеева (атомный номер элемента).


Нейтрон - электрически нейтральная частица с массой 1,6749 х 10-27кг, в 1839 раз больше массы электрона. Нейрон в свободном состоянии - нестабильная частица, он самостоятельно превращается в протон с испусканием электрона и антинейтрино. Период полураспада нейтронов (время, в течение которого распадается половина первоначального количества нейтронов) равен примерно 12 мин. Однако в связанном состоянии внутри стабильных атомных ядер он стабилен. Общее число нуклонов (протонов и нейтронов) в ядре называют массовым числом (атомной массой - А). Число нейтронов, входящих в состав ядра, равно разности между массовым и зарядовым числами: N = A - Z.


Электрон - элементарная частица, носитель наименьшей массы - 0,91095х10-27г и наименьшего электрического заряда - 1,6021х10-19 Кл. Это отрицательно заряженная частица. Число электронов в атоме равно числу протонов в ядре, т.е. атом электрически нейтрален.


Позитрон - элементарная частица с положительным электрическим зарядом, античастица по отношению к электрону. Масса электрона и позитрона равны, а электрические заряды равны по абсолютной величине, но противоположны по знаку.


Различные типы ядер называют нуклидами. Нуклид - вид атомов с данными числами протонов и нейтронов. В природе существуют атомы одного и того же элемента с разной атомной массой (массовым числом):
, Cl и т.д. Ядра этих атомов содержат одинаковое число протонов, но различное число нейтронов. Разновидности атомов одного и того же элемента, имеющие одинаковый заряд ядер, но различное массовое число, называются изотопами . Обладая одинаковым количеством протонов, но различаясь числом нейтронов, изотопы имеют одинаковое строение электронных оболочек, т.е. очень близкие химические свойства и занимают одно и то же место в периодической системе химических элементов.


Обозначают символом соответствующего химического элемента с расположенным сверху слева индексом А - массовым числом, иногда слева внизу приводится также число протонов (Z). Например, радиоактивные изотопы фосфора обозначают 32Р, 33Р или Р и Р соответственно. При обозначении изотопа без указания символа элемента массовое число приводится после обозначения элемента, например, фосфор - 32, фосфор - 33.


Большинство химических элементов имеет по несколько изотопов. Кроме изотопа водорода 1Н-протия, известен тяжелый водород 2Н-дей-терий и сверхтяжелый водород 3Н-тритий. У урана 11 изотопов, в природных соединениях их три (уран 238, уран 235, уран 233). У них по 92 протона и соответственно 146,143 и 141 нейтрон.


В настоящее время известно более 1900 изотопов 108 химических элементов. Из них к естественным относятся все стабильные (их примерно 280) и естественные изотопы, входящие в состав радиоактивных семейств (их 46). Остальные относятся к искусственным, они получены искусственным путем в результате различных ядерных реакций.


Термин «изотопы» следует применять только в тех случаях, когда речь идет об атомах одного и того же элемента, например, углерода 12С и 14С. Если подразумеваются атомы разных химических элементов, рекомендуется использовать термин «нуклиды», например, радионуклиды 90Sr, 131J, 137Cs.

  • Ассоциативные примеры процесса эзоосмоса, передачи и распределения энергии и информации
  • Состав ядра атома. Расчет протонов и нейтронов
  • Формулы реакций, лежащие в основе управляемого термоядерного синтеза
  • Состав ядра атома. Расчет протонов и нейтронов


    Согласно современным представлениям, атом состоит из ядра и расположенных вокруг него электронов. Ядро атома, в свою очередь, состоит из более малых элементарных частиц ‒ из определенного количества протонов и нейтронов (общепринятое название для которых – нуклоны), связанных между собой ядерными силами.

    Количество протонов в ядре определяет строение электронной оболочки атома. А электронная оболочка определяет физико-химические свойства вещества. Число протонов соответствует порядковому номеру атома в периодической системе химических элементов Менделеева, именуется также зарядовое число, атомный номер, атомное число. Например, число протонов у атома Гелия – 2. В периодической таблице он стоит под номером 2 и обозначается как He 2 Символом для обозначения количества протонов служит латинская буква Z. При записи формул зачастую цифра, указывающая на количество протонов, располагается снизу от символа элемента либо справа, либо слева: He 2 / 2 He.

    Количество нейтронов соответствует определённому изотопу того или иного элемента. Изотопы – это элементы с одинаковым атомным номером (одинаковым количеством протонов и электронов), но с разным массовым числом. Массовое число общее количество нейтронов и протонов в ядре атома (обозначается латинской буквой А). При записи формул массовое число указывается вверху символа элемента с одной из сторон: He 4 2 / 4 2 He (Изотоп Гелия – Гелий - 4)

    Таким образом, чтобы узнать число нейтронов в том или ином изотопе, следует от общего массового числа отнять число протонов. Например, нам известно, что в атоме Гелия-4 He 4 2 cодержится 4 элементарные частицы, так как массовое число изотопа – 4 . При этом нам известно, что He 4 2 меет 2 протона. Отняв от 4 (общее массовое число) 2 (кол-во протонов) получаем 2 – количество нейтронов в ядре Гелия-4.

    ПРОЦЕСС РАСЧЁТА КОЛИЧЕСТВА ФАНТОМНЫХ ЧАСТИЧЕК ПО В ЯДРЕ АТОМА. В качестве примера мы не случайно рассмотрели Гелий-4 (He 4 2), ядро которого состоит из двух протонов и двух нейтронов. Поскольку ядро Гелия-4, именуемое альфа-частицей (α-частица) обладает наибольшей эффективностью в ядерных реакциях, его часто используют для экспериментов в этом направлении. Стоит отметить, что в формулах ядерных реакций зачастую вместо He 4 2 используется символ α.

    Именно с участием альфа-частиц была проведена Э. Резерфордом первая в официальной истории физики реакция ядерного превращения. В ходе реакции α-частицами (He 4 2) «бомбардировались» ядра изотопа азота (N 14 7), вследствие чего образовался изотоп оксигена (O 17 8) и один протон (p 1 1)

    Данная ядерная реакция выглядит следующим образом:

    Осуществим расчёт количества фантомных частичек По до и после данного преобразования.

    ДЛЯ РАСЧЁТА КОЛИЧЕСТВА ФАНТОМНЫХ ЧАСТИЧЕК ПО НЕОБХОДИМО:
    Шаг 1. Посчитать количество нейтронов и протонов в каждом ядре:
    - количество протонов указано в нижнем показателе;
    - количество нейтронов узнаем, отняв от общего массового числа (верхний показатель) количество протонов (нижний показатель).

    Шаг 2. Посчитать количество фантомных частичек По в атомном ядре:
    - умножить количество протонов на количество фантомных частичек По, содержащихся в 1 протоне;
    - умножить количество нейтронов на количество фантомных частичек По, содержащихся в 1 нейтроне;

    Шаг 3. Сложить количество фантомных частичек По:
    - сложить полученное количество фантомных частичек По в протонах с полученным количеством в нейтронах в ядрах до реакции;
    - сложить полученное количество фантомных частичек По в протонах с полученным количеством в нейтронах в ядрах после реакции;
    - сравнить количество фантомных частичек По до реакции с количеством фантомных частичек По после реакции.

    ПРИМЕР РАЗВЁРНУТОГО ВЫЧИСЛЕНИЯ КОЛИЧЕСТВА ФАНТОМНЫХ ЧАСТИЧЕК ПО В ЯДРАХ АТОМОВ.
    (Ядерная реакция с участием α-частицы (He 4 2), провёденная Э. Резерфордом в 1919 году)

    ДО РЕАКЦИИ (N 14 7 + He 4 2)
    N 14 7

    Количество протонов: 7
    Количество нейтронов: 14-7 = 7
    в 1 протоне – 12 По, значит в 7 протонах: (12 х 7) = 84;
    в 1 нейтроне – 33 По, значит в 7 нейтронах: (33 х 7) = 231;
    Общее количество фантомных частичек По в ядре: 84+231 = 315

    He 4 2
    Количество протонов – 2
    Количество нейтронов 4-2 = 2
    Количество фантомных частичек По:
    в 1 протоне – 12 По, значит в 2 протонах: (12 х 2) = 24
    в 1 нейтроне – 33 По, значит в 2 нейтронах: (33 х 2) = 66
    Общее количество фантомных частичек По в ядре: 24+66 = 90

    Итого, количество фантомных частичек По до реакции

    N 14 7 + He 4 2
    315 + 90 = 405

    ПОСЛЕ РЕАКЦИИ (O 17 8) и один протон (p 1 1):
    O 17 8
    Количество протонов: 8
    Количество нейтронов: 17-8 = 9
    Количество фантомных частичек По:
    в 1 протоне – 12 По, значит в 8 протонах: (12 х 8) = 96
    в 1 нейтроне – 33 По, значит в 9 нейтронах: (9 х 33) = 297
    Общее количество фантомных частичек По в ядре: 96+297 = 393

    p 1 1
    Количество протонов: 1
    Количество нейтронов: 1-1=0
    Количество фантомных частичек По:
    В 1 протоне – 12 По
    Нейтроны отсутствуют.
    Общее количество фантомных частичек По в ядре: 12

    Итого, количество фантомных частичек По после реакции
    (O 17 8 + p 1 1):
    393 + 12 = 405

    Сравним количество фантомных частичек По до и после реакции:


    ПРИМЕР СОКРАЩЁННОЙ ФОРМЫ ВЫЧИСЛЕНИЯ КОЛИЧЕСТВА ФАНТОМНЫХ ЧАСТИЧЕК ПО В ЯДЕРНОЙ РЕАКЦИИ.

    Известной ядерной реакцией является реакция взаимодействия α-частиц с изотопом бериллия, прикоторой впервые был обнаружен нейтрон, проявивший себя как самостоятельная частица в результате ядерного преобразования. Данная реакция была осуществлена в 1932 году английским физиком Джеймсом Чедвиком. Формула реакции:

    213 + 90 → 270 + 33 - количество фантомных частичек По в каждом из ядер

    303 = 303 - общая сумма фантомных частичек По до и после реакции

    Количества фантомных частичек По до и после реакции равны.

    Похожие публикации