Обработка результатов измерений в физическом практикуме измерения и погрешности измерений. Обработка результатов прямых измерений Даны результаты прямых измерений некоторых физических величин

1. Цель работы : изучение методов измерения физических величин, практических приемов обработки и анализа результатов измерений. Изучение нониусов.

2. Краткая теория

Методы измерения физических величин. Погрешности измерений

Измерение в широком смысле слова - это операция, посредством которой устанавливается численное соотношение между измеряемой величиной и заранее выбранной мерой. Мы будем рассматривать измерение физических величин.

Физическая величина - это свойство, общее в качественном отношении многим объектам (физическим системам, их состояниям и происходящим в них процессам), но в количественном отношении - индивидуальное для каждого физического объекта.

Измерить физическую величину - это значит сравнить её с другой, однородной величиной, принятой за единицу измерения.

Для измерения физических величин применяются различные технические средства, специально для этого предназначенные и имеющие нормированные метрологические свойства.

Поясним некоторые из указанных средств измерений.

Мера - это средство измерений в виде тела или устройства, предназначенного для воспроизведения величин одного или нескольких размеров, значения которых известны с необходимой для измерений точностью. Примером меры могут служить гиря, измерительная колба, масштабная линейка.

В отличие от меры измерительный прибор не воспроизводит известное значение величины. Измеряемая величина в нём преобразуется в показание или сигнал, пропорциональный измеряемой величине в форме, доступной для непосредственного воспроизведения. Примером измерительного прибора могут слу­жить амперметр, вольтметр, термопара и пр.



Измерения физических величин могут отличаться друг от друга особенностями технического или методического характера. С методической точки зрения измерения физических величин поддаются определённой систематизации. Их можно, например, подразделять на прямые и косвенные.

Если измеряемая величина непосредственно сравнивается с соответствующей единицей её измерения или определяется путём отсчёта показаний измерительного прибора, градуированного в соответственных единицах, то такое измерение называется прямым. Например, измерения толщины проволоки микрометром, промежутка времени секундомером, силы тока амперметром - являются прямыми.

Большинство физических величин измеряется косвенным путём. Косвенным называется такое измерение, при котором искомая физическая величина непосредственно не измеряется, а вычисляется по результатам прямых измерений некоторых вспомогательных величин, связанных с искомой величиной определённой функциональной зависимостью.

При любых измерениях физических величин получаются результаты, которые неизбежно содержат погрешности (ошибки). Эти погрешности обусловлены самыми разнообразными причинами (несовершенство мер и измерительных приборов, несовершенство наших чувств). Результаты измерений являются, поэтому лишь приближёнными, более или менее близкими к истинным значениям измеряемых величин.

Разность между истинным значением измеряемой величины х и фактически измеренным называется истинной абсолютной погрешностью, или ошибкой измерения:


Отношение истинной абсолютной погрешности к истинному значению измеряемой величины х называется истинной относительной погрешностью измерения:

Относительная погрешность - величина отвлечённая, она выражается в долях единицы или в процентах и поэтому позволяет сравнивать точность независимых друг от друга выполненных измерений (например, точность измерения диаметра и высоты цилиндра).

Так как никакое измерение не может дать истинного значения измеряемой величины, то задачей измерения любой физической величины является нахождение приближённого наиболее вероятного значения этой величины, а также определение и оценка допущенной при этом погрешности.

Погрешности (ошибки), которые имеют место при измерении физических величин, подразделяются на три группы: грубые, систематические, случайные. Грубые ошибки (промахи)- это ошибки, явно искажающие результаты измерений. Причинами грубых ошибок могут быть неисправности эксперимен­тальной установки или измерительного прибора. Но чаще всего это следствие ошибок самого экспериментатора: неправильное определение цены деления измерительного прибора, неверный отсчёт делений, но шкале прибора, ошибочная запись результатов прямых измерений и т. п. В дальнейшем изложении, будем предполагать, что измерения не содержат грубых ошибок (промахов).

Систематические погрешности обусловлены действием постоянных по величине и направлению факторов. Например, неточностью изготовления мер, неправильной градуировкой шкал или неправильной установкой измерительных приборов, а также постоянным и односторонним воздействием на измеряемую величину или измерительную установку какого-либо внешнего фактора.

При повторных измерениях данной величины в одинаковых условиях систематическая погрешность каждый раз повторяется, имея одну и ту же величину и знак, или изменяется по определённому закону. При внимательном анализе принципа действия применяемых приборов, методики измерения и окружающих условий, систематические погрешности можно либо исключить в самом процессе измерения, либо учесть в окончательном результате измерений, внеся соответствующую поправку.

Случайные погрешности обусловлены действием большого числа самых разнообразных, как правило, переменных факторов, в своём большинстве не поддающихся учёту и контролю и проявляющихся в каждом отдельном измерении по-разному. В силу неупорядоченности совокупного действия этих факторов предвидеть появление случайной погрешности и предугадать её величину и знак невозможно. Погрешность такого рода потому и называется случайной, что появление её - дело случая, появление её не вытекает из данных условий эксперимента. Она может быть, а может и не быть.

Случайные погрешности проявляют себя в том, что при не­изменных условиях эксперимента и при полностью исключённых систематических погрешностях результаты повторных измерений одной и тон же величины оказываются несколько отличающимися друг от друга. Случайные погрешности, по указанным выше причинам не могут быть исключены из результатов измерений, как, например, погрешности систематические.

3акон распределения случайных погрешностей

Полностью избежать или исключить совершенно случайные погрешности невозможно, так как факторы, их вызывающие, не поддаются учёту и носят случайный характер. Возникает вопрос: как уменьшить влияние случайных погрешностей на окончательный результат измерения и как оценить точность и достоверность последнего? Ответ на этот вопрос даёт теория вероятностей. Теория вероятностей - это математическая наука, выясняющая закономерности случайных событий (явлений), которые проявляются при действии большого числа случайных факторов.

Случайные погрешности измерений относятся к группе не­прерывных величин. Непрерывные величины характеризуются бесчисленным множеством возможных значений. Вероятность любого значения непрерывной случайной величины бесконечно мала. Поэтому, чтобы выявить распределение вероятностей для какой-то непрерывной случайной величины, например, величины , рассматривают ряд интервалов значений этой величины и подсчитывают частоты попадания значений величины в каждый интервал . Таблица, в которой приведены интервалы в порядке их распределения вдоль оси абсцисс и соответствующие им частоты, называется статистическим рядом (табл. 1).

Таблица 1

Интервалы I . . . . . . . . . . . . . .
Частоты Р* . . . . . . . . . . . . . .

Статистический ряд графически представляется в виде ступенчатой кривой, которую называют гистограммой. При построении гистограммы по оси абсцисс откладываются интервалы возможных значений случайной величины, а по оси ординат - частоты или число случаев, когда значение случайной величины попадает в данный интервал. Для большинства интересующих нас случайных погрешностей гистограмма имеет вид, показанный на рис. 1. На этом рисунке высота, а следовательно, и площадь прямоугольника для каждого интервала ошибок пропорциональны числу опытов, в которых данная ошибка наблюдалась.

При увеличении числа опытов (измерений) и уменьшении интервала разбиения оси абсцисс гистограмма теряет свой ступенчатый характер и стремится (переходит) к плавной кривой (рис. 2). Такую кривую называют кривой плотности распределения для данной случайной величины, а уравнение, описывающее эту кривую, называется законом распределения случайной величины.

Считается, что случайная величина полностью определена, если известен закон её распределения. Этот закон может быть представлен (задан) в интегральной или дифференциальной форме. Интегральный закон распределения случайной величины обозначается символом и называется функцией распределения. Производная функция от называется плотностью вероятности случайной величины X или дифференциальным законом распределения:

.

При решении многих практических задач нет необходимости характеризовать случайную величину исчерпывающим образом. Достаточно бывает указать только её некоторые числовые характеристики, например, её математическое ожидание (можно писать ) и дисперсию (можно писать ).

Для непрерывной случайной величины X с плотностью вероятности математическое ожидание вычисляется по формуле

. (3)

Для непрерывной случайной величины X дисперсия определяется по формуле:

. (4)

Положительный квадратный корень из дисперсии обозначается символом и называется средним квадратическим отклонением (сокращенно с. к. о.):

. (5)

При конечном числе опытов в качестве оценки принимают среднее арифметическое наблюденных (измеренных) значений , т. е. и и - математическое ожидание и среднее квадратическое отклонение - параметры нормального распределения, физический смысл и способ вычисления которых были пояснены выше.

При рассмотрении свойств и характеристик распределения случайных погрешностей мы ограничимся только нормальным законом, так как случайные погрешности измерений чаще всего распределяются нормально (по закону Гаусса). Это означает:

1) случайная погрешность измерения может принимать любые значения в интервале

2) случайные погрешности, равные по абсолютной величине, но противоположные по знаку, равновероятны, то есть встречаются одинаково часто;

3) чембольше по абсолютной величине случайные погрешности, тем они менее вероятны, то есть встречаются реже.

В общем случае порядок обработки результатов прямых измерений следующий (предполагается, что систематических ошибок нет).

Случай 1. Число измерений меньше пяти.

1) По формуле (6) находится средний результат x , определяемый как среднее арифметическое от результатов всех измерений, т.е.

2) По формуле (12) вычисляются абсолютные погрешности отдельных измерений

.

3) По формуле (14) определяется средняя абсолютная погрешность

.

4) По формуле (15) вычисляют среднюю относительную погрешность результата измерений

.

5) Записывают окончательный результат по следующей форме:

, при
.

Случай 2 . Число измерений свыше пяти.

1) По формуле (6) находится средний результат

.

2) По формуле (12) определяются абсолютные погрешности отдельных измерений

.

3) По формуле (7) вычисляется средняя квадратическая погрешность единичного измерения

.

4) Вычисляется среднее квадратическое отклонение для среднего значения измеряемой величины по формуле (9).

.

5) Записывается окончательный результат по следующей форме

.

Иногда случайные погрешности измерений могут оказаться меньше той величины, которую в состоянии зарегистрировать измерительный прибор (инструмент). В этом случае при любом числе измерений получается один и тот же результат. В подобных случаях в качестве средней абсолютной погрешности
принимают половину цены деления шкалы прибора (инструмента). Эту величину иногда называют предельной или приборной погрешностью и обозначают
(для нониусных приборов и секундомера
равна точности прибора).

Оценка достоверности результатов измерений

В любом эксперименте число измерений физической величины всегда по тем или иным причинам ограничено. В связи с этим может быть поставлена задача оценить достоверность полученного результата. Иными словами, определить, с какой вероятностью можно утверждать, что допущенная при этом оши­бка не превосходит наперед заданную величину ε. Упомянутую вероятность принято называть доверительной вероятностью. Обозначим её буквой.

Может быть поставлена и обратная задача: определить границы интервала
, чтобы с заданной вероятностью можно было утверждать, что истинное значение измерений величины не выйдет за пределы указанного, так называемого доверительного интервала.

Доверительный интервал характеризует точность полученного результата, а доверительная вероятность - его надёжность. Методы решения этих двух групп задач имеются и особенно подробно разработаны для случая, когда погрешности измерений распределены по нормальному закону. Теория ве­роятностей даёт также методы для определения числа опытов (повторных измерений), при которых обеспечивается заданная точность и надёжность ожидаемого результата. В данной работе эти методы не рассматриваются (ограничимся только их упоминанием), так как при выполнении лабораторных работ подобные задачи обычно не ставятся.

Особый интерес, однако, представляет случай оценки достоверности результата измерений физических величин при весьма малом числе повторных измерений. Например,
. Это именно тот случай, с которым мы часто встречаемся при выполнении лабораторных работ по физике. При решении указанного рода задач рекомендуется использовать метод, в основе которого лежит распределение (закон) Стьюдента.

Для удобства практического применения рассматриваемого метода имеются таблицы, с помощью которых можно определить доверительный интервал
, соответствующий заданной доверительной вероятности или решить обратную задачу.

Ниже приведены те части упомянутых таблиц, которые могут потребоваться при оценке результатов измерений на лабораторных занятиях.

Пусть, например, произведено равноточных (в одинаковых условиях) измерений некоторой физической величины и вычислено её среднее значение . Требуется найти доверительный интервал , соответствующий заданной доверительной вероятности . Задача в общем виде решается так.

По формуле с учётом (7) вычисляют

Затем для заданных значений n и находят по таблице (табл. 2) величину . Искомое значение вычисляется на основе формулы

(16)

При решении обратной задачи вначале вычисляют по формуле (16) параметр. Искомое значение доверительной вероятности берётся из таблицы (табл. 3) для заданного числа и вычисленного параметра .

Таблица 2. Значение параметра при заданных числе опытов

и доверительной вероятности

Таблица 3 Значение доверительной вероятности при заданном числе опытов n и параметре ε

Случайные погрешности обладают следующими свойствами.

    При большом числе измерений одинаковые по величине, но противоположные по знаку погрешности встречаются одинаково часто.

    Большие по величине погрешности встречаются с меньшей вероятностью, чем малые. Из соотношений (1), переписав их в виде

Х = х 1 + х 1

Х = х 2 + х 2

Х = х n + х n

и сложив столбиком, можно определить истинное значение измеряемой величины следующим образом:

или
.

(2)

т.е. истинное значение измеряемой величины равно среднему арифметическому значению результатов измерений, если их бесконечно много. При ограниченном, а тем более при небольшом числе измерений, с которым мы обычно имеем дело на практике, равенство (2) носит приближенный характер.

Пусть в результате нескольких измерений получены следующие значения измеряемой величины Х: 13,4; 13,2; 13,3; 13,4; 13,3; 13,2; 13,1; 13,3; 13,3; 13,2; 13,3; 13,1. Построим диаграмму распределения этих результатов, откладывая по оси абсцисс показания прибора в порядке их возрастания. Расстояния между соседними точками по оси абсцисс равны удвоенной максимальной ошибке отсчета по прибору. В нашем случае отсчет произведен до 0,1. Этому и равно одно деление шкалы, нанесенной на ось абсцисс. По оси ординат откладываем величины, пропорциональные относительному числу результатов, соответствующих тому или иному показанию прибора. Относительное число, или относительную частоту результатов, равных х к, будем обозначатьW(х к). В нашем случае

Каждому х к ставим в соответствие

(3)

где А – коэффициент пропорциональности.




Диаграмма, которую называют гистограммой, отличается от обычного графика тем, что точки не соединены плавной кривой линей, а через них проведены ступеньки. Очевидно, что площадь ступеньки над некоторым значением х к пропорциональна относительной частоте появления этого результата. Выбирая соответствующим образом коэффициент пропорциональности в выражении (3), можно эту площадь сделать равной относительной частоте появления результата х к. Тогда сумма площадей всех ступенек, как сумма относительных частот всех результатов, должна быть равна единице

Отсюда находим А=10. Условие (4) называется условием нормировки функции (3).

Если производить серии измерений по nизмерений в каждой серии, то при небольшомnотносительные частоты одного и того же значения х k , найденные из различных серий, могут значительно отличаться друг от друга. По мере увеличения числа измерений в сериях колебания в значенияхW(x k) уменьшаются и эти значения приближаются к некоторому постоянному числу, которое называется вероятностью результата х к и обозначается Р(х к).

Допустим, что, производя опыт, мы не отсчитываем результат до целых делений шкалы или их долей, а можем фиксировать ту точку, где остановилась стрелка. Тогда при неограниченно большом числе измерений стрелка побывает в каждой точке шкалы. Распределение результатов измерений приобретает в этом случае непрерывный характер и вместо ступенчатой гистограммы описывается непрерывной кривой y=f(x). На основании свойств случайных погрешностей можно заключить, что кривая должна быть симметрична и, следовательно, максимум ее приходится на среднее арифметическое значение результатов измерений, равное истинному значению измеряемой величины. В случае непрерывного распределения результатов измерений не имеет


смысла говорить о вероятности какого – либо из их значений, т.к. имеются значения, как угодно близкие к рассматриваемому. Теперь уже следует ставить вопрос о вероятности встретить при измерениях результат в некотором интервале около значения х к, равном
,
. Подобно тому как на гистограмме относительная частота результата х к равнялось площади ступеньки, построенной над этим результатом, на графике для непрерывного распределения вероятность нахождения результата в интервале (
,
), равна площади криволинейной трапеции, построенной над этим интервалом и ограниченной кривойf(x). Математическая запись этого результата имеет вид

если
мало, т.е. площадь заштрихованной криволинейной трапеции заменяется приблизительно площадью прямоугольника с тем же основанием и высотой, равнойf(х к). Функциюf(х) называют плотностью вероятности распределения результатов измерений. Вероятность найти х на некотором интервале равна плотности вероятности для данного интервала, умноженной на его длину.

Кривая распределения результатов измерений, полученная экспериментально для некоторого участка шкалы прибора, если ее продолжить, асимптотически приближая слева и справа к оси абсцисс, аналитически хорошо описывается функцией вида

(5)

Подобно тому как суммарная площадь всех ступенек на гистограмме равнялась единице, вся площадь между кривой f(х) и осью абсцисс, имеющая смысл вероятности встретить при измерениях хоть какое – либо значение х, тоже равна единице. Распределение, описываемое этой функцией, называется нормальным распределением. Основной параметр нормального распределения – дисперсия 2 . Приближенное значение дисперсии может быть найдено из результатов измерений по формуле

(6)

Эта формула дает близкое к действительному значение дисперсии только при большом числе измерений. Например, найденное по результатам 100 измерений σ 2 может иметь отклонение от действительного значения 15%, найденное по 10 измерениям уже 40%. Дисперсия определяет вид кривой нормального распределения. Когда случайные погрешности малы, дисперсия, как следует из (6), невелика. Криваяf(х) в этом случае уже и острее вблизи истинного значения Х и быстрее стремится к нулю при удалении от него, чем при больших погрешностях. Следующий рисунок покажет, как меняется вид кривойf(х) для нормального распределения в зависимости от σ.

В теории вероятностей доказывается, что если рассматривать не распределение результатов измерений, а распределение средних арифметических значений, найденных из серии по nизмерений в каждой серии, то оно тоже подчиняется нормальному закону, но с дисперсией, вnраз меньшей.

Вероятность нахождения результата измерений в некотором интервале (
) около истинного значения измеряемой величиныравна площади криволинейной трапеции, построенной над этим интервалом и ограниченной сверху кривойf(x). Величину интервала
принято измерять в единицах, пропорциональных корню квадратному из дисперсии
В зависимости от величиныkна интервал
приходится криволинейная трапеция большей или меньшей площади, т.е.

где F(k) – некоторая функция от к. Вычисления показывают, что при

k=1,

k=2,

k=3,

Отсюда видно, что на интервале
приходится приблизительно 95% площади под кривойf(x). Этот факт находится в полном соответствии со вторым свойством случайных погрешностей, которые утверждает, что большие по величине погрешности маловероятны. Погрешности, превышающие по величине
, встречается с вероятностью, меньшей 5%. Переписанное для распределения среднего арифметического значенияnизмерений выражение (7) принимает вид

(8)

Величина в (7) и (8) может быть определена на основании результатов измерений только приближенно по формуле (6)

Подставив это значение в выражение (8), мы получим справа уже неF(k), а какую – то новую функцию, зависящую не только от величины рассматриваемого интервала значений Х, но и от числа произведенных измерений
Причем

т.к. только при очень большом числе измерений формула (6) становится достаточно точной.

Решив систему двух неравенств, стоящих в скобке в левой части этого выражения относительно истинного значения Х, можем переписать его в виде

Выражение (9) определяет вероятность, с которой истинное значение Х находится в некотором интервале длиной около значения. Эта вероятность в теории ошибок называется надежностью, а соответствующий ей интервал для истинного значения – доверительным интервалом. Функция
рассчитана в зависимости отt n иnи для нее составлена подробная таблица. Таблица имеет 2 входа: поt n и поn. С ее помощью для данного числа измеренийnможно найти, задаваясь определенной величиной надежности Р, значения величиныt n , называемой коэффициентом Стьюдента.

Анализ таблицы показывает, что для определенного числа измерений с требованием роста надежности получаем растущие значения t n , т.е. увеличение доверительного интервала. Надежности, равной единице, соответствовал бы доверительный интервал, равный бесконечности. Задаваясь определенной надежностью, мы можем сделать доверительный интервал для истинного значения более узким, увеличивая количество измерений, т.к.S n при этом изменяется незначительно, аубывает и за счет уменьшения числителя, и за счет увеличения знаменателя. Произведя достаточное количество опытов, можно сделать доверительный интервал любой малой величины. Но при большомnдальнейшее увеличение числа опытов очень медленно уменьшает доверительный интервал, а количество вычислительной работы намного возрастает. Иногда в практической работе удобно пользоваться приближенным правилом: чтобы уменьшить доверительный интервал, найденный по небольшому числу измерений, в несколько раз, нужно увеличить число измерений во столько же раз.

ПРИМЕР ОБРАБОТКИ РЕЗУЛЬТАТОВ ПРЯМЫХ ИЗМЕРЕНИЙ

Возьмем в качестве опытных данных три первых результата из 12, по которым строилась гистограмма Х: 13,4; 13,2; 13,3.

Зададимся надежностью, которая обычно принята в учебной лаборатории, Р = 95%. Из таблицы для Р = 0,95 и n = 3 находим t n = 4,3.

или

с надежностью 95%. Последний результат принято записывать в виде равенства

Если доверительный интервал такой величины не устраивает (например в случае, когда приборная погрешность равна 0,1), и мы хотим уменьшить его вдвое, следует увеличить число измерений вдвое.

Если взять, например, последние 6 значений из тех же 12 результатов (для первых шести предлагается проделать расчет самим)

Х: 13,1; 13,3; 13,3; 13,2; 13,3; 13,1,

то

Значение коэффициента t n находим из таблицы для Р = 0,95 и n = 6; t n = 2,6.

В этом случае
Изобразим на числовой оси доверительный интервал для истинного значения в первом и во втором случаях.







Интервал, рассчитанный по 6 измерениям, находится, как и следовало ожидать, внутри интервала, найденного по трем измерениям.

Приборная погрешность вносит в результаты систематическую ошибку, которая расширяет изображенные на оси доверительные интервалы на 0,1. Поэтому записанные с учетом приборной погрешности результаты имеют вид

1)
2)

В основе точных естественных наук лежат измерения. При измерениях значения величин выражаются в виде чисел, которые указывают во сколько раз измеренная величина больше или меньше другой величины, значение которой принято за единицу. Полученные в результате измерений числовые значения различных величин могут зависеть друг от друга. Связь между такими величинами выражается в виде формул, которые показывают, как числовые значения одних величин могут быть найдены по числовым значениям других.

При измерениях неизбежно возникают погрешности. Необходимо владеть методами, применяемыми при обработке результатов, полученных при измерениях. Это позволит научиться получать из совокупности измерений наиболее близкие к истине результаты, вовремя заметить несоответствия и ошибки, разумно организовать сами измерения и правильно оценить точность полученных значений.

Если измерение заключается в сравнении данной величины с другой, однородной величиной, принятой за единицу, то измерение в этом случае называется прямым.

Прямые (непосредственные) измерения – это такие измерения, при которых мы получаем численное значение измеряемой величины либо прямым сравнением ее с мерой (эталоном), либо с помощью приборов, градуированных в единицах измеряемой величины.

Однако далеко не всегда такое сравнение производится непосредственно. В большинстве случаев измеряется не сама интересующая нас величина, а другие величины, связанные с нею теми или иными соотношениями и закономерностями. В этом случае для измерения необходимой величины приходится предварительно измерить несколько других величин, по значению которых вычислением определяется значение искомой величины. Такое измерение называется косвенным.

Косвенные измерения состоят из непосредственных измерений одной или нескольких величин, связанных с определяемой величиной количественной зависимостью, и вычисления по этим данным определяемой величины.

В измерениях всегда участвуют измерительные приборы, которые одной величине ставят в соответствие связанную с ней другую, доступную количественной оценке с помощью наших органов чувств. Например, силе тока ставится в соответствие угол отклонения стрелки на шкале с делениями. При этом должны выполняться два основных условия процесса измерения: однозначность и воспроизводимость результата. эти два условия всегда выполняются только приблизительно. Поэтому процесс измерения содержит наряду с нахождением искомой величины и оценку неточности измерения .

Современный инженер должен уметь оценить погрешность результатов измерений с учетом требуемой надежности. Поэтому большое внимание уделяется обработке результатов измерений. Знакомство с основными методами расчета погрешностей – одна из главных задач лабораторного практикума.

Почему возникают погрешности?

Существует много причин для возникновения погрешностей измерений. Перечислим некоторые из них.

· процессы, происходящие при взаимодействии прибора с объектом измерений, неизбежно изменяют измеряемую величину. Например, измерение размеров детали с помощью штангенциркуля, приводит к сжатию детали, то есть к изменению ее размеров. Иногда влияние прибора на измеряемую величину можно сделать относительно малым, иногда же оно сравнимо или даже превышает саму измеряемую величину.

· Любой прибор имеет ограниченные возможности однозначного определения измеряемой величины вследствие конструктивной неидеальности. Например, трение между различными деталями в стрелочном блоке амперметра приводит к тому, что изменение тока на некоторую малую, но конечную, величину не вызовет изменения угла отклонения стрелки.

· Во всех процессах взаимодействия прибора с объектом измерения всегда участвует внешняя среда, параметры которой могут изменяться и, зачастую, непредсказуемым образом. Это ограничивает возможность воспроизводимости условий измерения, а, следовательно, и результата измерения.

· При визуальном снятии показаний прибора возможна неоднозначность в считывании показаний прибора вследствие ограниченных возможностей нашего глазомера.

· Большинство величин определяется косвенным образом на основании наших знаний о связи искомой величины с другими величинами, непосредственно измеряемыми приборами. Очевидно, что погрешность косвенного измерения зависит от погрешностей всех прямых измерений. Кроме того, в ошибки косвенного измерения свой вклад вносят и ограниченность наших познаний об измеряемом объекте, и упрощенность математического описания связей между величинами, и игнорирование влияния тех величин, воздействие которых в процессе измерения считается несущественным.

Классификация погрешностей

Значение погрешности измерения некоторой величины принято характеризовать:

1. Абсолютной погрешностью – разностью между найденным на опыте (измеренным) и истинным значением некоторой величины

. (1)

Абсолютная погрешность показывает, на сколько мы ошибаемся при измерении некоторой величины Х.

2. Относительной погрешностью равной отношению абсолютной погрешности к истинному значению измеряемой величины Х

Относительная погрешность показывает, на какую долю от истинного значения величины Х мы ошибаемся.

Качество результатов измерений какой-то величины характеризуется относительной погрешностью . Величина может быть выражена в процентах.

Из формул (1) и (2) следует, что для нахождения абсолютной и относительной погрешностей измерений, нужно знать не только измеренное, но и истинное значение интересующей нас величины. Но если истинное значение известно, то незачем производить измерения. Цель измерений всегда состоит в том, чтобы узнать не известное заранее значение некоторой величины и найти если не ее истинное значение, то хотя бы значение, достаточно мало от него отличающееся. Поэтому формулы (1) и (2), определяющие величину погрешностей на практике не пригодны. При практических измерениях погрешности не вычисляются, а оцениваются. При оценках учитываются условия проведения эксперимента, точность методики, качество приборов и ряд других факторов. Наша задача: научиться строить методику эксперимента и правильно использовать полученные на опыте данные для того, чтобы находить достаточно близкие к истинным значения измеряемых величин, разумно оценивать погрешности измерений.

Говоря о погрешностях измерений, следует, прежде всего, упомянуть о грубых погрешностях (промахах) , возникающих вследствие недосмотра экспериментатора или неисправности аппаратуры. Грубых ошибок следует избегать. Если установлено, что они произошли, соответствующие измерения нужно отбрасывать.

Не связанные с грубыми ошибками погрешности опыта делятся на случайные и систематические.

с лучайные погрешности. Многократно повторяя одни и те же измерения, можно заметить, что довольно часто их результаты не в точности равны друг другу, а «пляшут» вокруг некоторого среднего (рис.1). Погрешности, меняющие величину и знак от опыта к опыту, называют случайными. Случайные погрешности непроизвольно вносятся экспериментатором вследствие несовершенства органов чувств, случайных внешних факторов и т. д. Если погрешность каждого отдельного измерения принципиально непредсказуема, то они случайным образом изменяют значение измеряемой величины. Эти погрешности можно оценить только при помощи статистической обработки многократных измерений искомой величины.

Систематические погрешности могут быть связаны с ошибками приборов (неправильная шкала, неравномерно растягивающаяся пружина, неравномерный шаг микрометрического винта, не равные плечи весов и т. д.) и с самой постановкой опыта. Они сохраняют свою величину (и знак!) во время эксперимента. В результате систематических погрешностей разбросанные из-за случайных погрешностей результаты опыта колеблются не вокруг истинного, а вокруг некоторого смещенного значения (рис.2). погрешность каждого измерения искомой величины можно предсказать заранее, зная характеристики прибора.



Расчет погрешностей прямых измерений

Систематические погрешности . Систематические ошибки закономерным образом изменяют значения измеряемой величины. Наиболее просто поддаются оценке погрешности, вносимые в измерения приборами, если они связаны с конструктивными особенностями самих приборов. Эти погрешности указываются в паспортах к приборам. Погрешности некоторых приборов можно оценить и не обращаясь к паспорту. Для многих электроизмерительных приборов непосредственно на шкале указан их класс точности.

Класс точности прибора – это отношение абсолютной погрешности прибора к максимальному значению измеряемой величины , которое можно определить с помощью данного прибора (это систематическая относительная погрешность данного прибора, выраженная в процентах от номинала шкалы ).

.

Тогда абсолютная погрешность такого прибора определяется соотношением:

.

Для электроизмерительных приборов введено 8 классов точности: 0,05; 0,1; 0,5; 1,0; 1,5; 2,0; 2,5; 4.

Чем ближе измеряемая величина к номиналу, тем более точным будет результат измерения. Максимальная точность (т. е. наименьшая относительная ошибка), которую может обеспечить данный прибор, равна классу точности. Это обстоятельство необходимо учитывать при использовании многошкальных приборов. Шкалу надо выбирать с таким расчетом, чтобы измеряемая величина, оставаясь в пределах шкалы, была как можно ближе к номиналу.

Если класс точности для прибора не указан, то необходимо руководствоваться следующими правилами:

· Абсолютная погрешность приборов с нониусом равна точности нониуса.

· Абсолютная погрешность приборов с фиксированным шагом стрелки равна цене деления.

· Абсолютная погрешность цифровых приборов равна единице минимального разряда.

· Для всех остальных приборов абсолютная погрешность принимается равной половине цены деления.

Случайные погрешности . Эти погрешности имеют статистический характер и описываются теорией вероятности. Установлено, что при очень большом количестве измерений вероятность получить тот или иной результат в каждом отдельном измерении можно определить при помощи нормального распределения Гаусса. При малом числе измерений математическое описание вероятности получения того или иного результата измерения называется распределением Стьюдента (более подробно об этом можно прочитать в пособии «Ошибки измерений физических величин»).

Как же оценить истинное значение измеряемой величины?

Пусть при измерении некоторой величины мы получили N результатов: . Среднее арифметическое серии измерений ближе к истинному значению измеряемой величины, чем большинство отдельных измерений. Для получения результата измерения некоторой величины используется следующий алгоритм.

1). Вычисляется среднее арифметическое серии из N прямых измерений:

2). Вычисляется абсолютная случайная погрешность каждого измерения – это разность между средним арифметическим серии из N прямых измерений и данным измерением:

.

3). Вычисляется средняя квадратичная абсолютная погрешность :

.

4). Вычисляется абсолютная случайная погрешность . При небольшом числе измерений абсолютную случайную погрешность можно рассчитать через среднюю квадратичную погрешность и некоторый коэффициент , называемый коэффициентом Стъюдента:

,

Коэффициент Стьюдента зависит от числа измерений N и коэффициента надежности (в таблице 1 отражена зависимость коэффициента Стьюдента от числа измерений при фиксированном значении коэффициента надежности ).

Коэффициент надежности – это вероятность, с которой истинное значение измеряемой величины попадает в доверительный интервал.

Доверительный интервал – это числовой интервал, в который с определенной вероятностью попадает истинное значение измеряемой величины.

Таким образом, коэффициент Стъюдента – это число, на которое нужно умножить среднюю квадратичную погрешность, чтобы при данном числе измерений обеспечить заданную надежность результата.

Чем большую надежность необходимо обеспечить для данного числа измерений, тем больше коэффициент Стъюдента. С другой стороны, чем больше число измерений, тем меньше коэффициент Стъюдента при данной надежности. В лабораторных работах нашего практикума будем считать надежность заданной и равной 0,9. Числовые значения коэффициентов Стъюдента при этой надежности для разного числа измерений приведены в таблице 1.

Таблица 1

Число измерений N

Коэффициент Стъюдента

5). Вычисляется полная абсолютная погрешность. При любых измерениях существуют и случайные и систематические погрешности. Расчет общей (полной) абсолютной погрешности измерения дело непростое, так как эти погрешности разной природы.

Для инженерных измерений имеет смысл суммировать систематическую и случайную абсолютные погрешности

.

Для простоты расчетов принято оценивать полную абсолютную погрешность как сумму абсолютной случайной и абсолютной систематической (приборной) погрешностей, если погрешности одного порядка величины, и пренебрегать одной из погрешностей, если она более чем на порядок (в 10 раз) меньше другой.

6). Округляется погрешность и результат . Поскольку результат измерений представляется в виде интервала значений, величину которого определяет полная абсолютная погрешность, важное значение имеет правильное округление результата и погрешности.

Округление начинают с абсолютной погрешности!!! Число значащих цифр, которое оставляют в значении погрешности, вообще говоря, зависит от коэффициента надежности и числа измерений. Однако даже для очень точных измерений (например, астрономических), в которых точное значение погрешности важно, не оставляют более двух значащих цифр. Бóльшее число цифр не имеет смысла, так как определение погрешности само имеет свою погрешность. В нашем практикуме сравнительно небольшой коэффициент надежности и малое число измерений. Поэтому при округлении (с избытком) полной абсолютной погрешности оставляют одну значащую цифру.

Разряд значащей цифры абсолоютной погрешности определяет разряд первой сомнительной цифры в значении результата. Следовательно, само значение результата нужно округлять (с поправкой) до той значащей цифры, разряд которой совпадает с разрядом значащей цифры погрешности . Сформулированное правило следует применять и в тех случаях, когда некоторые из цифр являются нулями.

Если при измерении массы тела получен результат , то писать нули в конце числа 0,900 необходимо. Запись означала бы, что о следующих значащих цифрах ничего не известно, в то время как измерения показали, что они равны нулю.

7). Вычисляется относительная погрешность .

При округлении относительной погрешности достаточно оставить две значащие цифры.

р езультат серии измерений некоторой физической величины представляют в виде интервала значений с указанием вероятности попадания истинного значения в данный интервал, то есть результат необходимо записать в виде:

Здесь – полная, округленная до первой значащей цифры, абсолютная погрешность и – округленное с учетом уже округленной погрешности среднее значение измеряемой величины. При записи результата измерений обязательно нужно указать единицу измерения величины.

Рассмотрим несколько примеров:

1. Пусть при измерении длины отрезка мы получили следующий результат: см и см. Как грамотно записать результат измерений длины отрезка? Сначала округляем с избытком абсолютную погрешность, оставляя одну значащую цифру см. Значащая цифра погрешности в разряде сотых. Затем округляем с поправкой среднее значение с точностью до сотых, т. е. до той значащей цифры, разряд которой совпадает с разрядом значащей цифры погрешности см. Вычисляем относительную погрешность

.

см; ; .

2. Пусть при расчете сопротивления проводника мы получили следующий результат: и . Сначала округляем абсолютную погрешность, оставляя одну значащую цифру . Затем округляем среднее значение с точностью до целых . Вычисляем относительную погрешность

.

Результат измерений записываем так:

; ; .

3. Пусть при расчете массы груза мы получили следующий результат: кг и кг. Сначала округляем абсолютную погрешность, оставляя одну значащую цифру кг. Затем округляем среднее значение с точностью до десятков кг. Вычисляем относительную погрешность

. .

Вопросы и задачи по теории погрешностей

1. Что значит измерить физическую величину? Приведите примеры.

2. Почему возникают погрешности измерений?

3. Что такое абсолютная погрешность?

4. Что такое относительная погрешность?

5. Какая погрешность характеризует качество измерения? Приведите примеры.

6. Что такое доверительный интервал?

7. Дайте определение понятию «систематическая погрешность».

8. Каковы причины возникновения систематических погрешностей?

9. Что такое класс точности измерительного прибора?

10. Как определяются абсолютные погрешности различных физических приборов?

11. Какие погрешности называются случайными и как они возникают?

12. Опишите процедуру вычисления средней квадратичной погрешности.

13. Опишите процедуру расчета абсолютной случайной погрешности прямых измерений.

14. Что такое «коэффициент надежности»?

15. От каких параметров и как зависит коэффициент Стьюдента?

16. Как рассчитывается полная абсолютная погрешность прямых измерений?

17. Напишите формулы для определения относительной и абсолютной погрешностей косвенных измерений.

18. Сформулируйте правила округления результата с погрешностью.

19. Найдите относительную погрешность измерения длины стены при помощи рулетки с ценой деления 0,5см. Измеренная величина составила 4,66м.

20. При измерении длины сторон А и В прямоугольника были допущены абсолютные погрешности ΔА и ΔВ соответственно. Напишите формулу для расчета абсолютной погрешности ΔS, полученной при определении площади по результатам этих измерений.

21. Измерение длины ребра куба L имело погрешность ΔL. Напишите формулу для определения относительной погрешности объема куба по результатам этих измерений.

22. Тело двигалось равноускоренно из состояния покоя. Для расчета ускорения измерили путь S, пройденный телом, и время его движения t. Абсолютные погрешности этих прямых измерений составили соответственно ΔS и Δt. Выведите формулу для расчета относительной погрешности ускорения по этим данным.

23. При расчете мощности нагревательного прибора по данным измерений получены значения Рср = 2361,7893735 Вт и ΔР = 35,4822 Вт. Запишите результат в виде доверительного интервала, выполнив необходимое округление.

24. При расчете величины сопротивления по данным измерений получены следующие значения: Rср = 123,7893735 Ом, ΔR = 0,348 Ом. Запишите результат в виде доверительного интервала, выполнив необходимое округление.

25. При расчете величины коэффициента трения по данным измерений получены значения μср = 0,7823735 и Δμ = 0,03348. Запишите результат в виде доверительного интервала, выполнив необходимое округление.

26. Ток силой 16,6 А определялся по прибору с классом точности 1,5 и номиналом шкалы 50 А. Найдите абсолютную приборную и относительную погрешности этого измерения.

27. В серии из 5 измерений периода колебаний маятника получились следующие значения: 2,12 с, 2,10 с, 2,11 с, 2,14 с, 2,13 с. Найдите абсолютную случайную погрешность определения периода по этим данным.

28. Опыт падения груза с некоторой высоты повторяли 6 раз. При этом получались следующие величины времени падения груза: 38,0 с, 37,6 с, 37,9 с, 37,4 с, 37,5 с, 37,7 с. Найдите относительную погрешность определения времени падения.

Цена деления – это измеряемая величина, вызывающая отклонение указателя на одно деление. Цена деления определяется как отношение верхнего предела измерения прибора к числу делений шкалы.

Для уменьшения влияния случайных ошибок необходимо произвести измерение данной величины несколько раз. Предположим, что мы измеряем некоторую величину x. В результате проведенных измерений мы получили значений величины:

x 1 , x 2 , x 3 , ... x n . (2)

Этот ряд значений величины x получил название выборки. Имея такую выборку, мы можем дать оценку результата измерений. Величину, которая будет являться такой оценкой, мы обозначим . Но так как это значение оценки результатов измерений не будет представлять собой истинного значения измеряемой величины, необходимо оценить его ошибку. Предположим, что мы сумеем определить оценку ошибки Δx . В таком случае мы можем записать результат измерений в виде

µ = ± Δx (3)

Так как оценочные значения результата измерений и ошибки Δx не являются точными, запись (3) результата измерений должна сопровождаться указанием его надежности P. Под надежностью или доверительной вероятностью понимают вероятность того, что истинное значение измеряемой величины заключено в интервале, указанном записью (3). Сам этот интервал называется доверительным интервалом.

Например, измеряя длину некоторого отрезка, окончательный результат мы записали в виде

l = (8.34 ± 0.02) мм, (P = 0.95)

Это означает, что из 100 шансов – 95 за то, что истинное значение длины отрезка заключается в интервале от 8.32 до 8.36 мм .

Таким образом, задача заключается в том, чтобы, имея выборку (2), найти оценку результата измерений , его ошибку Δx и надежность P.

Эта задача может быть решена с помощью теории вероятностей и математической статистики.

В большинстве случаев случайные ошибки подчиняются нормальному закону распределения, установленного Гауссом. Нормальный закон распределения ошибок выражается формулой

(4)

где Δx – отклонение от величины истинного значения;

σ – истинная среднеквадратичная ошибка;

σ 2 – дисперсия, величина которой характеризует разброс случайных величин.

Как видно из (4) функция имеет максимальное значение при x = 0 , кроме того, она является четной.

На рис.16 показан график этой функции. Смысл функции (4) заключается в том, что площадь фигуры, заключенной между кривой, осью Δx и двумя ординатами из точек Δx 1 и Δx 2 (заштрихованная площадь на рис.16 ) численно равна вероятности, с которой любой отсчет попадет в интервал (Δx 1 ,Δx 2) .

Поскольку кривая распределена симметрично относительно оси ординат, можно утверждать, что равные по величине, но противоположные по знаку ошибки равновероятны. А это дает возможность в качестве оценки результатов измерений взять среднее значение всех элементов выборки (2)

где – n число измерений.

Итак, если в одних и тех же условиях проделано n измерений, то наиболее вероятным значением измеряемой величины будет ее среднее значение (арифметическое). Величина стремится к истинному значению μ измеряемой величины при n → ∞.

Средней квадратичной ошибкой отдельного результата измерения называется величина

. (6)

Она характеризует ошибку каждого отдельного измерения. При n → ∞ S стремится к постоянному пределу σ

σ = lim S. (7)
n → ∞

С увеличением σ увеличивается разброс отсчетов, т.е. становится ниже точность измерений.

Среднеквадратичной ошибкой среднего арифметического называется величина

. (8)

Это фундаментальный закон возрастания точности при росте числа измерений.

Ошибка характеризует точность, с которой получено среднее значение измеренной величины . Результат записывается в виде:

Эта методика расчета ошибок дает хорошие результаты (с надежностью 0.68) только в том случае, когда одна и та же величина измерялась не менее 30 – 50 раз.

В 1908 году Стьюдент показал, что статистических подход справедлив и при малом числе измерений. Распределение Стьюдента при числе измерений n → ∞ переходит в распределение Гаусса, а при малом числе отличается от него.

Для расчета абсолютной ошибки при малом количестве измерений вводится специальный коэффициент, зависящий от надежности P и числа измерений n, называемый коэффициентом
Стьюдента t.

Опуская теоретические обоснования его введения, заметим, что

Δx = · t. (10)

где Δx – абсолютная ошибка для данной доверительной вероятности;
– среднеквадратичная ошибка среднего арифметического.

Коэффициенты Стьюдента приведены в таблице 2 .

Для этого удобнее воспользоваться таблицей 3, в которой интервалы заданы в долях величины σ, являющейся мерой точности данного опыта по отношению к случайным ошибкам.

Таблица 2
Коэффициенты Стьюдента
n Значения Р
0.6 0.8 0.95 0.99 0.999
2 1.376 3.078 12.706 63.657 636.61
3 1.061 1.886 4.303 9.925 31.598
4 0.978 1.638 3.182 5.841 12.941
5 0.941 1.533 2.776 4.604 8.610
6 0.920 1.476 2.571 4.032 6.859
7 0.906 1.440 2.447 3.707 5.959
8 0.896 1.415 2.365 3.499 5.405
9 0.889 1.397 2.306 3.355 5.041
10 0.883 1.383 2.262 3.250 4.781
11 0.879 1.372 2.228 3.169 4.587
12 0.876 1.363 2.201 3.106 4.437
13 0.873 1.356 2.179 3.055 4.318
14 0.870 1.350 2.160 3.012 4.221
15 0.868 1.345 2.145 2.977 4.140
16 0.866 1.341 2.131 2.947 4.073
17 0.865 1.337 2.120 2.921 4.015
18 0.863 1.333 2.110 2.898 3.965
19 0.862 1.330 2.101 2.878 3.922
20 0.861 1.328 2.093 2.861 3.883
21 0.860 1.325 2.086 2.845 3.850
22 0.859 1.323 2.080 2.831 3.819
23 0.858 1.321 2.074 2.819 3.792
24 0.858 1.319 2.069 2.807 3.767
25 0.857 1.318 2.064 2.797 3.745
26 0.856 1.316 2.060 2.787 3.725
27 0.856 1.315 2.056 2.779 3.707
28 0.855 1.314 2.052 2.771 3.690
29 0.855 1.313 2.048 2.763 3.674
30 0.854 1.311 2.045 2.756 3.659
31 0.854 1.310 2.042 2.750 3.646
40 0.851 1.303 2.021 2.704 3.551
60 0.848 1.296 2.000 2.660 3.460
120 0.845 1.289 1.980 2.617 3.373
0.842 1.282 1.960 2.576 3.291
Таблица 3
Необходимое число измерений для получения ошибки Δ с надежностью Р
Δ = Δx/σ Значения Р
0.5 0.7 0.9 0.95 0.99 0.999
1.0 2 3 5 7 11 17
0.5 3 6 13 18 31 50
0.4 4 8 19 27 46 74
0.3 6 13 32 46 78 127
0.2 13 29 70 99 171 277
0.1 47 169 273 387 668 1089

При обработке результатов прямых измерений предлагается следующий порядок операций:

  1. Результат каждого измерения запишите в таблицу.
  2. Вычислите среднее значение из n измерений
  3. Найдите погрешность отдельного измерения
Похожие публикации